Properties

Label 3360.x.10.a1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_8:C_6$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,2)(3,5)(4,7)(6,8), (9,11)(12,13), (1,4)(2,7)(3,6)(5,8), (2,8,7,4,5,6,3), (3,6,4)(5,8,7), (1,3)(2,5)(4,6)(7,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $F_5\times F_8:C_3$
Order: \(3360\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times F_8:C_3$, of order \(3360\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$F_8:C_{12}$
Normal closure:$D_5\times F_8:C_3$
Core:$F_8:C_3$
Minimal over-subgroups:$D_5\times F_8:C_3$$F_8:C_{12}$
Maximal under-subgroups:$F_8:C_3$$C_2\times F_8$$C_2^2\times A_4$$C_7:C_6$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$F_5\times F_8:C_3$