Properties

Label 336.40.6.b1.a1
Order $ 2^{3} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times Q_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, c, b^{12}, b^{18}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{21}:Q_{16}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^4\times C_6)$
$\operatorname{Aut}(H)$ $C_6\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(28\)\(\medspace = 2^{2} \cdot 7 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_7:Q_{16}$
Normal closure:$C_{21}:Q_8$
Core:$C_{28}$
Minimal over-subgroups:$C_{21}:Q_8$$C_7:Q_{16}$
Maximal under-subgroups:$C_{28}$$C_{28}$$Q_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_7:D_{12}$