Properties

Label 336.190.14.c1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times Q_8$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{21}, c^{28}, c^{42}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{28}.D_6$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times D_6\times S_4$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{42}$
Normalizer:$C_{28}.D_6$
Complements:$C_{14}$ $C_{14}$
Minimal over-subgroups:$Q_8\times C_{21}$$S_3\times Q_8$
Maximal under-subgroups:$C_{12}$$C_{12}$$C_{12}$$Q_8$

Other information

Möbius function$1$
Projective image$D_6\times C_{14}$