Properties

Label 3332.d.119.b1.a1
Order $ 2^{2} \cdot 7 $
Index $ 7 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_4$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a^{7}, b^{85}, a^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{119}:C_{28}$
Order: \(3332\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{357}.C_{24}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_7:C_{28}$
Normal closure:$C_{119}:C_4$
Core:$C_{14}$
Minimal over-subgroups:$C_{119}:C_4$$C_7:C_{28}$
Maximal under-subgroups:$C_{14}$$C_4$

Other information

Number of subgroups in this conjugacy class$17$
Möbius function$1$
Projective image$C_7\times D_{119}$