Properties

Label 3300.b.5.b1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{66}:C_{10}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(5\)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}, b^{110}, b^{165}, b^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{330}:C_{10}$
Order: \(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{55}.C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_{33}:C_{10}$, of order \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{330}:C_{10}$
Complements:$C_5$ $C_5$
Minimal over-subgroups:$C_{330}:C_{10}$
Maximal under-subgroups:$C_{11}:C_{30}$$C_{33}:C_{10}$$C_{22}:C_{10}$$S_3\times C_{22}$$S_3\times C_{10}$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$5$
Möbius function$-1$
Projective image$C_{165}:C_{10}$