Subgroup ($H$) information
Description: | $C_2\times D_{14}$ |
Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Index: | \(588\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{2} \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$cd^{11}e^{2}f^{6}, f^{7}, d^{2}e^{12}, e^{7}f^{7}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $(C_7\times C_{14}^2):S_4$ |
Order: | \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.C_2^4.C_6^2.C_2$ |
$\operatorname{Aut}(H)$ | $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $84$ |
Möbius function | $0$ |
Projective image | $(C_7\times C_{14}^2):S_4$ |