Properties

Label 328.12.82.a1.a1
Order $ 2^{2} $
Index $ 2 \cdot 41 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(82\)\(\medspace = 2 \cdot 41 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{41}:C_8$
Order: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Exponent: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{41}$, of order \(1640\)\(\medspace = 2^{3} \cdot 5 \cdot 41 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_8$
Normalizer:$C_8$
Normal closure:$C_{41}:C_4$
Core:$C_1$
Minimal over-subgroups:$C_{41}:C_4$$C_8$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$41$
Möbius function$1$
Projective image$C_{41}:C_8$