Properties

Label 32768.cp.32._.O
Order $ 2^{10} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8.D_{64}$
Order: \(1024\)\(\medspace = 2^{10} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Generators: $\left(\begin{array}{rr} 165 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 32 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 240 & 0 \\ 0 & 136 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 207 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $7$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{256}.D_{64}$
Order: \(32768\)\(\medspace = 2^{15} \)
Exponent: \(256\)\(\medspace = 2^{8} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Automorphism Group: $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{64}.C_8^2.C_4^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{32}.C_{32}.C_2^4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed