Subgroup ($H$) information
| Description: | $C_{58}:C_4$ | 
| Order: | \(232\)\(\medspace = 2^{3} \cdot 29 \) | 
| Index: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Exponent: | \(116\)\(\medspace = 2^{2} \cdot 29 \) | 
| Generators: | 
		
    $a^{7}, b^{29}, b^{2}, a^{14}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_2^2\times F_{29}$ | 
| Order: | \(3248\)\(\medspace = 2^{4} \cdot 7 \cdot 29 \) | 
| Exponent: | \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{14}$ | 
| Order: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Automorphism Group: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4\times F_{29}$, of order \(19488\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 29 \) | 
| $\operatorname{Aut}(H)$ | $C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \) | 
| $\operatorname{res}(S)$ | $C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) | 
| $W$ | $F_{29}$, of order \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \) | 
Related subgroups
Other information
| Möbius function | $1$ | 
| Projective image | $C_2\times F_{29}$ |