Properties

Label 324000.v.120.cl1
Order $ 2^{2} \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ad^{2}e^{10}f, d^{6}e^{24}f^{9}, b^{2}e^{14}f^{4}, d^{20}, b^{3}d^{10}e^{20}f^{5}, e^{6}f^{6}, d^{20}e^{10}f^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_{15}\wr S_3:C_2$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_{15}^2.C_{12}.C_2^3$
$W$$C_{15}^2:(C_2\times D_6)$, of order \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_{15}^2.(S_3\times D_6)$
Normal closure:$C_3^3:D_5\wr S_3$
Core:$C_1$
Minimal over-subgroups:$(C_5\times C_{15}^2):D_6$$(C_3\times C_{15}^2):D_6$$C_{15}^2:(C_2\times D_6)$

Other information

Number of subgroups in this autjugacy class$20$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_{15}\wr S_3:C_2$