Properties

Label 324000.bp.180.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{2} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{15}:F_5$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Index: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ad^{13}e^{10}, d^{6}e^{6}f^{6}, f^{10}, d^{20}e^{10}, b^{9}, f^{3}, b^{6}d^{20}e^{5}f^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times \GL(2,3)\times C_5^2:C_4.S_5$
$W$$D_5:F_5$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_3\times C_5^2:(C_2\times C_4\times S_3)$
Normal closure:$C_{15}^3.(C_4\times S_4)$
Core:$C_1$
Minimal over-subgroups:$C_3^2\times C_5^3:(C_2\times C_4)$$C_3\times C_5^2:(C_{12}\times S_3)$$C_3\times C_5^2:(C_2\times C_4\times S_3)$
Maximal under-subgroups:$C_5^2:C_6^2$$C_{15}^2:C_4$$C_{15}^2:C_4$$C_{30}:F_5$$C_{30}:F_5$$C_{30}:F_5$$C_{30}:C_{12}$$C_{30}:C_{12}$$C_{30}:C_{12}$$C_{30}:C_{12}$

Other information

Number of subgroups in this autjugacy class$90$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}^3.(C_4\times S_4)$