Properties

Label 324000.bm.5400.dg1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:C_4$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ab^{3}cd^{7}e^{8}f^{6}, d^{20}f^{10}, e^{3}f^{3}, b^{6}d^{24}e^{9}f^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$C_{15}:C_4$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$S_3$
Normalizer:$D_5.S_3^2$
Normal closure:$(C_{15}^3.A_4):C_4$
Core:$C_1$
Minimal over-subgroups:$C_{15}:F_5$$C_{15}:F_5$$C_{15}:F_5$$C_{15}:F_5$$C_{15}:F_5$$C_{15}:F_5$$C_3^2:F_5$$C_{15}:C_{12}$$C_{30}:C_4$
Maximal under-subgroups:$C_3\times D_5$$F_5$$C_3:C_4$

Other information

Number of subgroups in this autjugacy class$900$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$