Properties

Label 324000.bm.13500.m1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 3^{3} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(13500\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{4}d^{3}e^{14}f^{10}, cd^{15}e^{14}f^{13}, d^{15}e^{2}f^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times S_4$
Normal closure:$C_{15}^3.S_4$
Core:$C_1$
Minimal over-subgroups:$C_5^3:S_4$$C_3^3:S_4$$C_2\times S_4$
Maximal under-subgroups:$A_4$$D_4$$S_3$

Other information

Number of subgroups in this autjugacy class$3375$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$