Subgroup ($H$) information
| Description: | $C_3^2:C_6$ | 
| Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) | 
| Index: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $\langle(3,4,9), (1,8,6)(3,4,9), (5,7)(6,8), (2,7,5)(3,4,9)\rangle$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $(C_3^2\times C_{15}):S_4$ | 
| Order: | \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) | 
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \) | 
| $\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| $\operatorname{res}(S)$ | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| $W$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ | 
| Möbius function | $0$ | 
| Projective image | $(C_3^2\times C_{15}):S_4$ |