Properties

Label 3240.bk.60.a1.a1
Order $ 2 \cdot 3^{3} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_6$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(3,4,9), (1,8,6)(3,4,9), (5,7)(6,8), (2,7,5)(3,4,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_3^2\times C_{15}):S_4$
Order: \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(S)$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_{15}:\SOPlus(4,2)$
Normal closure:$C_3:S_3^2$
Core:$C_3^3$
Minimal over-subgroups:$C_3^2:C_{30}$$C_3:S_3^2$$C_3:S_3^2$$C_3^2:C_{12}$
Maximal under-subgroups:$C_3^3$$C_3\times S_3$$C_3\times S_3$$C_3:S_3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$(C_3^2\times C_{15}):S_4$