Properties

Label 3240.bk.2.a1.a1
Order $ 2^{2} \cdot 3^{4} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_3^3:A_4$
Order: \(1620\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5 \)
Index: \(2\)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(3,4,9), (1,5,9,8,2,3,6,7,4)(10,14,11,12,13), (4,9)(6,8), (1,8,6)(3,4,9), (10,12,14,13,11), (5,7)(6,8), (2,7,5)(3,4,9)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the commutator subgroup (hence characteristic and normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_3^2\times C_{15}):S_4$
Order: \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5\)
$W$$C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$(C_3^2\times C_{15}):S_4$
Complements:$C_2$
Minimal over-subgroups:$(C_3^2\times C_{15}):S_4$
Maximal under-subgroups:$C_{15}:S_3^2$$C_3^3:C_{15}$$C_3^3:A_4$$C_5\times A_4$

Other information

Möbius function$-1$
Projective image$(C_3^2\times C_{15}):S_4$