Subgroup ($H$) information
| Description: | $C_5\times C_3^3:A_4$ |
| Order: | \(1620\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5 \) |
| Index: | \(2\) |
| Exponent: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
| Generators: |
$\langle(3,4,9), (1,5,9,8,2,3,6,7,4)(10,14,11,12,13), (4,9)(6,8), (1,8,6)(3,4,9), (10,12,14,13,11), (5,7)(6,8), (2,7,5)(3,4,9)\rangle$
|
| Derived length: | $3$ |
The subgroup is the commutator subgroup (hence characteristic and normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $(C_3^2\times C_{15}):S_4$ |
| Order: | \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(5\) |
| $W$ | $C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $(C_3^2\times C_{15}):S_4$ |