Properties

Label 324.9.81.a1.a1
Order $ 2^{2} $
Index $ 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{9}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group.

Ambient group ($G$) information

Description: $C_9:C_{36}$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{36}$
Normalizer:$C_{36}$
Normal closure:$C_9:C_4$
Core:$C_2$
Minimal over-subgroups:$C_{12}$$C_3:C_4$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$C_9:C_{18}$