Subgroup ($H$) information
| Description: | $C_9$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$b^{7}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
| Description: | $C_9:C_{36}$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Quotient group ($Q$) structure
| Description: | $C_{36}$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Automorphism Group: | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| $W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
| Centralizer: | $C_3\times C_{18}$ | |
| Normalizer: | $C_9:C_{36}$ | |
| Complements: | $C_{36}$ | |
| Minimal over-subgroups: | $C_3\times C_9$ | $C_{18}$ |
| Maximal under-subgroups: | $C_3$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_9:C_{36}$ |