Properties

Label 324.151.2.a1
Order $ 2 \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_{18}$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(2\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $c^{9}, c^{6}, a, b^{2}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, maximal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_3\times C_6\times C_{18}$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.\ASL(2,3).C_6.C_2^2$
$\operatorname{Aut}(H)$ $C_6.C_3^4:\GL(2,3)$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{res}(S)$$C_6.C_3^4:\GL(2,3)$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_6\times C_{18}$
Normalizer:$C_3\times C_6\times C_{18}$
Complements:$C_2$
Minimal over-subgroups:$C_3\times C_6\times C_{18}$
Maximal under-subgroups:$C_3^2\times C_9$$C_3\times C_{18}$$C_3^2\times C_6$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-1$
Projective image$C_2$