Subgroup ($H$) information
| Description: | $C_3\times C_6$ |
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$c^{9}, ac^{6}, b^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_9:C_6^2$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{18}:C_6\times S_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\operatorname{res}(S)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_3^2\times C_6$ | ||||
| Normalizer: | $C_3^2\times C_6$ | ||||
| Normal closure: | $C_3^2\times C_6$ | ||||
| Core: | $C_2$ | ||||
| Minimal over-subgroups: | $C_3^2\times C_6$ | ||||
| Maximal under-subgroups: | $C_3^2$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ |
Other information
| Number of subgroups in this conjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $D_9:C_3^2$ |