Subgroup ($H$) information
Description: | $C_2^2\times C_4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\langle(8,9,10,11)(12,16)(13,19)(14,18)(15,17), (12,17)(13,14)(15,16)(18,19), (12,14)(13,17)(15,19)(16,18), (8,10)(9,11)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_2\wr D_6.F_7$ |
Order: | \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_2\times S_4\times F_7$ |
Order: | \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Automorphism Group: | $C_2^2\times S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_2^4:C_3.C_2^5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Möbius function | not computed |
Projective image | not computed |