Properties

Label 322.1.46.a1.a1
Order $ 7 $
Index $ 2 \cdot 23 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(46\)\(\medspace = 2 \cdot 23 \)
Exponent: \(7\)
Generators: $b^{92}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_7\times C_{23}$
Order: \(322\)\(\medspace = 2 \cdot 7 \cdot 23 \)
Exponent: \(322\)\(\medspace = 2 \cdot 7 \cdot 23 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{46}$
Order: \(46\)\(\medspace = 2 \cdot 23 \)
Exponent: \(46\)\(\medspace = 2 \cdot 23 \)
Automorphism Group: $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
Outer Automorphisms: $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,23$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}\times F_7$, of order \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{161}$
Normalizer:$D_7\times C_{23}$
Complements:$C_{46}$
Minimal over-subgroups:$C_{161}$$D_7$
Maximal under-subgroups:$C_1$

Other information

Möbius function$1$
Projective image$D_7\times C_{23}$