Properties

Label 3201186852864000.a.4896.a1.a1
Order $ 2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 $
Index $ 2^{5} \cdot 3^{2} \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_{15}$
Order: \(653837184000\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
Index: \(4896\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 17 \)
Exponent: \(360360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Generators: $\langle(4,5,6,7,8,9,10,11,12,13,14,15,16,17,18), (4,6,7,8,9,10,11,12,13,14,15,16,17,18,5)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $A_{18}$
Order: \(3201186852864000\)\(\medspace = 2^{15} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
Exponent: \(12252240\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(6402373705728000\)\(\medspace = 2^{16} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
$\operatorname{Aut}(H)$ Group of order \(1307674368000\)\(\medspace = 2^{11} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$816$
Möbius function not computed
Projective image not computed