Properties

Label 3201186852864000.a.24310.a1.a1
Order $ 2^{14} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} $
Index $ 2 \cdot 5 \cdot 11 \cdot 13 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_9^2.C_4$
Order: \(131681894400\)\(\medspace = 2^{14} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \)
Index: \(24310\)\(\medspace = 2 \cdot 5 \cdot 11 \cdot 13 \cdot 17 \)
Exponent: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Generators: $\langle(1,2,3,4,5,6,7,8,9), (1,11,2,10)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18), (10,11,12,13,14,15,16,17,18)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $A_{18}$
Order: \(3201186852864000\)\(\medspace = 2^{15} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
Exponent: \(12252240\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(6402373705728000\)\(\medspace = 2^{16} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
$\operatorname{Aut}(H)$ Group of order \(263363788800\)\(\medspace = 2^{15} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$24310$
Möbius function not computed
Projective image not computed