Subgroup ($H$) information
Description: | not computed |
Order: | \(172440576000\)\(\medspace = 2^{13} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \) |
Index: | \(18564\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) |
Exponent: | not computed |
Generators: |
$\langle(7,8,9), (1,2)(3,4,5,6), (7,8)(9,10,11,12,13,14,15,16,17,18), (1,2)(7,8), (1,2,3)\rangle$
|
Derived length: | not computed |
The subgroup is maximal, nonabelian, and nonsolvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
Description: | $A_{18}$ |
Order: | \(3201186852864000\)\(\medspace = 2^{15} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \) |
Exponent: | \(12252240\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(6402373705728000\)\(\medspace = 2^{16} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \) |
$\operatorname{Aut}(H)$ | not computed |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $18564$ |
Möbius function | not computed |
Projective image | not computed |