Properties

Label 320.976.10.b1.a1
Order $ 2^{5} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:Q_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab, b^{2}c^{10}, c^{5}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_{20}.\SD_{16}$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $D_4^2:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4^2:C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{20}.\SD_{16}$
Minimal over-subgroups:$C_{20}:Q_8$$Q_8:Q_8$
Maximal under-subgroups:$C_4^2$$C_4:C_4$$C_4:C_4$$C_2\times Q_8$$C_4:C_4$

Other information

Möbius function$1$
Projective image$D_4\times C_{10}$