Properties

Label 320.572.2.b1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.D_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a^{2}, d^{2}, d^{5}, b^{2}, b, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^4.D_{10}$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9\times F_5$
$\operatorname{Aut}(H)$ $C_2^6.(D_4\times F_5)$, of order \(10240\)\(\medspace = 2^{11} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_5\times C_2^6$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^4.D_{10}$
Minimal over-subgroups:$C_2^4.D_{10}$
Maximal under-subgroups:$C_2^3\times C_{10}$$C_2^2.D_{10}$$C_2^2.D_{10}$$C_{10}.D_4$$C_{10}.D_4$$C_{10}.D_4$$C_{10}.D_4$$C_2^3:C_4$

Other information

Möbius function$-1$
Projective image$C_2\times D_{10}$