Properties

Label 320.119.10.a1.a1
Order $ 2^{5} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{2}, c^{5}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{40}.D_4$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times C_{10}:C_4^2$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{40}$
Normalizer:$C_{40}.D_4$
Minimal over-subgroups:$\OD_{16}:C_{10}$$\OD_{32}:C_2$
Maximal under-subgroups:$D_4:C_2$$C_2\times C_8$$\OD_{16}$$C_2\times C_8$$\OD_{16}$

Other information

Möbius function$5$
Projective image$C_5:D_4$