Subgroup ($H$) information
Description: | $C_5\times Q_8$ |
Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Generators: |
$a, c^{4}, c^{10}, b^{4}c^{15}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $C_{20}.D_8$ |
Order: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5:(C_2\times C_4\times C_2^2.C_2^5)$ |
$\operatorname{Aut}(H)$ | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | $C_2\times C_{10}$ | |||
Normalizer: | $Q_8\times C_{10}$ | |||
Normal closure: | $C_{20}:Q_8$ | |||
Core: | $C_{20}$ | |||
Minimal over-subgroups: | $Q_8\times C_{10}$ | |||
Maximal under-subgroups: | $C_{20}$ | $C_{20}$ | $C_{20}$ | $Q_8$ |
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_{10}.D_8$ |