Properties

Label 320.105.20.c1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times Q_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b^{4}c^{10}, c^{5}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_{20}.D_8$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2\times C_4\times C_2^2.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{20}:Q_8$
Normal closure:$C_4:Q_8$
Core:$C_2\times C_4$
Minimal over-subgroups:$Q_8\times C_{10}$$C_4:Q_8$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$Q_8$$Q_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{10}.D_4$