Subgroup ($H$) information
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$b$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
Description: | $Q_{16}:C_2$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_4^2$, of order \(64\)\(\medspace = 2^{6} \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times C_4$ | ||
Normalizer: | $C_2\times Q_8$ | ||
Normal closure: | $Q_8$ | ||
Core: | $C_2$ | ||
Minimal over-subgroups: | $Q_8$ | $C_2\times C_4$ | $Q_8$ |
Maximal under-subgroups: | $C_2$ | ||
Autjugate subgroups: | 32.44.8.e1.b1 |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2\times D_4$ |