Properties

Label 3194400.d.165._.D
Order $ 2^{5} \cdot 5 \cdot 11^{2} $
Index $ 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Index: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 7 & 10 & 0 & 0 \\ 8 & 0 & 10 & 0 \\ 0 & 3 & 7 & 1 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 3 & 4 \\ 2 & 6 & 1 & 3 \\ 6 & 0 & 7 & 5 \\ 8 & 6 & 9 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 9 & 2 \\ 8 & 7 & 9 & 9 \\ 9 & 9 & 6 & 0 \\ 7 & 9 & 3 & 3 \end{array}\right), \left(\begin{array}{rrrr} 5 & 2 & 10 & 8 \\ 8 & 7 & 7 & 2 \\ 10 & 8 & 5 & 8 \\ 3 & 9 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 3 & 10 & 0 \\ 5 & 3 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 9 & 9 & 3 & 0 \\ 4 & 9 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 1 & 9 & 4 & 9 \\ 5 & 1 & 5 & 4 \\ 3 & 8 & 10 & 2 \\ 2 & 3 & 6 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{11}^3:C_{10}^2.S_4$
Order: \(3194400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.(C_5\times A_4).C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.C_2^3.C_5.C_2^5$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$33$
Möbius function not computed
Projective image not computed