Properties

Label 3168.c.66.c1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \OD_{16}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 63 & 0 \\ 0 & 334 \end{array}\right), \left(\begin{array}{rr} 396 & 0 \\ 0 & 396 \end{array}\right), \left(\begin{array}{rr} 34 & 0 \\ 0 & 34 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 396 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 63 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_{44}:C_{36}$
Order: \(3168\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{36}$
Normalizer:$D_4:C_{36}$
Normal closure:$C_{132}.C_4$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{132}.C_4$$C_9\times \OD_{16}$$D_4:C_{12}$
Maximal under-subgroups:$C_2\times C_{12}$$C_{24}$$\OD_{16}$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$C_3\times D_{44}$