Properties

Label 3168.c.48.c1.a1
Order $ 2 \cdot 3 \cdot 11 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{11}$
Order: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 314 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 290 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{44}:C_{36}$
Order: \(3168\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_{11}$, of order \(22\)\(\medspace = 2 \cdot 11 \)

Related subgroups

Centralizer:$C_{36}$
Normalizer:$D_{11}\times C_{36}$
Normal closure:$C_3\times D_{44}$
Core:$C_{33}$
Minimal over-subgroups:$C_9\times D_{11}$$C_3\times D_{22}$
Maximal under-subgroups:$C_{33}$$D_{11}$$C_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$D_{44}:C_{12}$