Properties

Label 3168.c.198.a1.a1
Order $ 2^{4} $
Index $ 2 \cdot 3^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 63 & 0 \\ 0 & 334 \end{array}\right), \left(\begin{array}{rr} 396 & 0 \\ 0 & 396 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 63 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 396 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{44}:C_{36}$
Order: \(3168\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_9\times D_{11}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Automorphism Group: $C_6\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_{396}$
Normalizer:$D_{44}:C_{36}$
Complements:$C_9\times D_{11}$
Minimal over-subgroups:$C_4\times C_{44}$$C_4\times C_{12}$$C_4\wr C_2$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$

Other information

Möbius function$0$
Projective image$C_9\times D_{44}$