Properties

Label 3168.c.18.a1.a1
Order $ 2^{4} \cdot 11 $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{44}:C_2$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 396 \end{array}\right), \left(\begin{array}{rr} 124 & 0 \\ 0 & 381 \end{array}\right), \left(\begin{array}{rr} 290 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 282 & 0 \\ 0 & 252 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{44}:C_{36}$
Order: \(3168\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times D_4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_{44}$, of order \(88\)\(\medspace = 2^{3} \cdot 11 \)

Related subgroups

Centralizer:$C_{36}$
Normalizer:$D_{44}:C_{36}$
Minimal over-subgroups:$D_{44}:C_6$$D_{44}:C_4$
Maximal under-subgroups:$C_2\times C_{44}$$D_{44}$$C_{11}:Q_8$$C_{11}:D_4$$C_4\times D_{11}$$D_4:C_2$

Other information

Möbius function$0$
Projective image$C_9\times D_{44}$