Properties

Label 3168.c.1584.c1.a1
Order $ 2 $
Index $ 2^{4} \cdot 3^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $D_{44}:C_{36}$
Order: \(3168\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{36}$
Normalizer:$C_2\times C_{36}$
Normal closure:$D_{44}$
Core:$C_1$
Minimal over-subgroups:$D_{11}$$C_6$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$44$
Möbius function$0$
Projective image$D_{44}:C_{36}$