Properties

Label 314928.fz.34992.A
Order $ 3^{2} $
Index $ 2^{4} \cdot 3^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(3\)
Generators: $\langle(4,13,18)(7,17,9)(10,11,15), (1,5,14)(2,12,3)(6,16,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^7.(S_3\times S_4)$
Order: \(314928\)\(\medspace = 2^{4} \cdot 3^{9} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^6:(C_2\times S_4)$
Order: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $(C_3^2\times S_3^3).S_3^3$, of order \(419904\)\(\medspace = 2^{6} \cdot 3^{8} \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.C_6^2.C_3^3.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^5.C_6^2.C_3.C_6$
Normalizer:$C_3^7.(S_3\times S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3\wr A_4.D_6$