Subgroup ($H$) information
Description: | $C_3^2$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Index: | \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \) |
Exponent: | \(3\) |
Generators: |
$\langle(4,13,18)(7,17,9)(10,11,15), (1,5,14)(2,12,3)(6,16,8)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_3^7.(S_3\times S_4)$ |
Order: | \(314928\)\(\medspace = 2^{4} \cdot 3^{9} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_3^6:(C_2\times S_4)$ |
Order: | \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Automorphism Group: | $(C_3^2\times S_3^3).S_3^3$, of order \(419904\)\(\medspace = 2^{6} \cdot 3^{8} \) |
Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^5.C_6^2.C_3^3.C_2^4$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_3^5.C_6^2.C_3.C_6$ |
Normalizer: | $C_3^7.(S_3\times S_4)$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3\wr A_4.D_6$ |