Properties

Label 313632.a.66._.BC
Order $ 2^{4} \cdot 3^{3} \cdot 11 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{132}:C_{18}$
Order: \(4752\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 11 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 314 & 0 \\ 0 & 110 \end{array}\right), \left(\begin{array}{rr} 228 & 0 \\ 0 & 131 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 34 \end{array}\right), \left(\begin{array}{rr} 142 & 0 \\ 0 & 137 \end{array}\right), \left(\begin{array}{rr} 290 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 374 & 0 \\ 0 & 90 \end{array}\right), \left(\begin{array}{rr} 282 & 0 \\ 0 & 252 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{396}.D_{396}$
Order: \(313632\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 11^{2} \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(11404800\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 11 \)
$\operatorname{Aut}(H)$ $C_{66}.C_{30}.C_2^5$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed