Properties

Label 31104.mi.96.by1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:A_4$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(10,12,11), (7,8)(13,15), (13,14,15), (10,12)(13,15), (1,3,6)(2,4,5)(7,13,12,9,15,10,8,14,11), (7,8,9)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_3^3:S_4^2$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^3.A_4^2.C_2^4$
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_3^4:S_4$
Normal closure:$C_3^3:A_4^2$
Core:$C_3:S_3^2$
Minimal over-subgroups:$(C_3\times C_6^2):A_4$$C_3\wr A_4$$C_2\times C_3^3:A_4$$C_3^3:S_4$
Maximal under-subgroups:$C_3:S_3^2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times C_3^3:S_4^2$