Properties

Label 31104.mi.648.A
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,6,4,5), (1,2)(3,4), (1,6,3)(2,5,4), (3,4)(5,6), (3,6)(4,5)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2\times C_3^3:S_4^2$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $4$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^3.A_4^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_3^3:S_4$
Normalizer:$C_2\times C_3^3:S_4^2$
Complements:$C_3^3:S_4$ $C_3^3:S_4$ $C_3^3:S_4$ $C_3^3:S_4$ $C_3^3:S_4$
Minimal over-subgroups:$C_2^2\times S_4$
Maximal under-subgroups:$C_2\times A_4$$S_4$$D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4^2$