Subgroup ($H$) information
| Description: | $C_2\times S_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(3,6,4,5), (1,2)(3,4), (1,6,3)(2,5,4), (3,4)(5,6), (3,6)(4,5)\rangle$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:S_4^2$ |
| Order: | \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_3^3:S_4$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Automorphism Group: | $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3^3.A_4^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_3^3:S_4^2$ |