Properties

Label 310.6.10.a1.a1
Order $ 31 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{31}$
Order: \(31\)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(31\)
Generators: $a^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $31$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{310}$
Order: \(310\)\(\medspace = 2 \cdot 5 \cdot 31 \)
Exponent: \(310\)\(\medspace = 2 \cdot 5 \cdot 31 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,31$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{60}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{310}$
Normalizer:$C_{310}$
Complements:$C_{10}$
Minimal over-subgroups:$C_{155}$$C_{62}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$1$
Projective image$C_{10}$