Properties

Label 3080.a.88.a1.a1
Order $ 5 \cdot 7 $
Index $ 2^{3} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{35}$
Order: \(35\)\(\medspace = 5 \cdot 7 \)
Index: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(35\)\(\medspace = 5 \cdot 7 \)
Generators: $b^{924}, b^{440}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{11}\times D_{140}$
Order: \(3080\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_4\times C_{11}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Automorphism Group: $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Outer Automorphisms: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2800\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{1540}$
Normalizer:$C_{11}\times D_{140}$
Complements:$D_4\times C_{11}$
Minimal over-subgroups:$C_{385}$$C_{70}$$D_{35}$$D_{35}$
Maximal under-subgroups:$C_7$$C_5$

Other information

Möbius function$0$
Projective image$C_{11}\times D_{140}$