Properties

Label 3072.qo.2.B
Order $ 2^{9} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times C_4^2).S_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,6,2,5)(3,8,4,7)(9,14)(10,13)(11,16)(12,15)(17,23,18,24)(19,21,20,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times C_4^2).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:A_4.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_4^2:A_4.D_4.C_2^3$
$\card{\operatorname{res}(S)}$\(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$(C_4^2:A_4) \rtimes (C_2\times C_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times C_4^2).\GL(2,\mathbb{Z}/4)$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_2\times C_4^2).\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$(C_2^2\times C_4^2):A_4$$(C_2\times C_4^2).S_4$$C_2\times C_2^2.C_2^5.C_2$$C_2^4.S_4$$C_2^4.S_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$(C_4^2:A_4) \rtimes (C_2\times C_4)$