Properties

Label 3072.gg.4.t1
Order $ 2^{8} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(10,16)(12,14), (3,4)(5,7), (3,7)(4,5), (1,8)(2,6)(3,5)(4,7), (1,2,8)(4,5,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5:(C_4\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2^4:C_3.C_2^6$
$\card{W}$\(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^4:C_3.C_2^4.C_2$
Normal closure:$C_2^4:C_3.C_2^4.C_2$
Core:$C_2^2\wr S_3$
Minimal over-subgroups:$C_2^4:C_3.C_2^4.C_2$
Maximal under-subgroups:$C_2^2\wr S_3$$C_2^5:C_{12}$$C_2^4.S_4$$C_2^5.D_4$$C_2.\GL(2,\mathbb{Z}/4)$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed