Subgroup ($H$) information
| Description: | $C_2^3.\GL(2,\mathbb{Z}/4)$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(10,16)(12,14), (3,4)(5,7), (3,7)(4,5), (1,8)(2,6)(3,5)(4,7), (1,2,8)(4,5,7) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_2^5:(C_4\times S_4)$ |
| Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4:C_3.C_2^5.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2^4:C_3.C_2^6$ |
| $\card{W}$ | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |