Properties

Label 3072.gg.4.f1
Order $ 2^{8} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,5,4,7)(9,10,11,14)(12,15,16,13), (3,4)(5,7), (10,16)(12,14), (3,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5:(C_4\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $A_4^2.C_2^6.C_2$
$\card{W}$\(768\)\(\medspace = 2^{8} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^5:(C_4\times S_4)$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2^4:C_3.C_2^4.C_2$$C_2^4.(C_6.D_4).C_2$$C_2^4.(C_6.D_4).C_2$
Maximal under-subgroups:$C_2^5:A_4$$C_2^4.S_4$$C_2^6:C_4$$C_2.\GL(2,\mathbb{Z}/4)$$C_2.\GL(2,\mathbb{Z}/4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed