Subgroup ($H$) information
| Description: | $C_{48}$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 2 \\
22 & 11
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
12 & 11 \\
9 & 19
\end{array}\right), \left(\begin{array}{rr}
13 & 24 \\
8 & 5
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
16 & 25
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
| Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_4\times A_4).C_2^5.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \) |
| $\card{W}$ | $1$ |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $8$ |
| Möbius function | not computed |
| Projective image | not computed |