Subgroup ($H$) information
| Description: | $C_2\times C_{24}$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
5 & 8 \\
24 & 13
\end{array}\right), \left(\begin{array}{rr}
12 & 11 \\
9 & 19
\end{array}\right), \left(\begin{array}{rr}
25 & 16 \\
16 & 9
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
| Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_4\times A_4).C_2^5.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{W}$ | \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $4$ |
| Möbius function | not computed |
| Projective image | not computed |