Properties

Label 3072.cc.16.p1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{48}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 13 & 24 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 31 & 30 \\ 10 & 21 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right), \left(\begin{array}{rr} 12 & 11 \\ 9 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ $(C_2^4\times C_4):S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2\times C_4\times C_{48}$
Normalizer:$C_{24}.(C_4\times C_8)$
Normal closure:$C_2^4:C_{48}$
Core:$C_2^2\times C_{16}$
Minimal over-subgroups:$C_2^4:C_{48}$$C_2\times C_4\times C_{48}$
Maximal under-subgroups:$C_2^2\times C_{24}$$C_2\times C_{48}$$C_2\times C_{48}$$C_2\times C_{48}$$C_2\times C_{48}$$C_2^2\times C_{16}$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed