Properties

Label 3072.cc.12.t1.b1
Order $ 2^{8} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.\OD_{16}$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rr} 19 & 17 \\ 20 & 13 \end{array}\right), \left(\begin{array}{rr} 5 & 8 \\ 24 & 13 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ $C_2.C_2^6.C_2^6$
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2\times C_8$
Normalizer:$C_2\times (C_2^3\times C_8).C_2^2$
Normal closure:$C_2\times A_4.\OD_{32}.C_2$
Core:$C_2^2\times C_4\times C_8$
Minimal over-subgroups:$(C_4\times C_8).S_4$$C_2\times (C_2^3\times C_8).C_2^2$
Maximal under-subgroups:$C_2^2\times C_4\times C_8$$C_2^3.\OD_{16}$$C_2^3.\OD_{16}$$\OD_{32}:C_4$$\OD_{32}:C_4$$C_2^2:\OD_{32}$$C_2^2:\OD_{32}$
Autjugate subgroups:3072.cc.12.t1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image not computed