Properties

Label 3072.bz.8.l1
Order $ 2^{7} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4\times C_{48}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 19 & 6 \\ 2 & 17 \end{array}\right), \left(\begin{array}{rr} 21 & 24 \\ 8 & 13 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 24 & 17 \end{array}\right), \left(\begin{array}{rr} 3 & 21 \\ 7 & 28 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 16 \\ 16 & 9 \end{array}\right), \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_8\times C_2^3:C_{48}$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:C_4^2:C_2^2$, of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2.C_2^6.C_2^6$
$\card{W}$$1$

Related subgroups

Centralizer:$C_2\times C_8\times C_{48}$
Normalizer:$C_2\times C_8\times C_{48}$
Normal closure:$C_4\times C_{16}\times C_2\times A_4$
Core:$C_2\times C_4\times C_{16}$
Minimal over-subgroups:$C_4\times C_{16}\times C_2\times A_4$$C_2\times C_8\times C_{48}$
Maximal under-subgroups:$C_2\times C_4\times C_{24}$$C_2^2\times C_{48}$$C_4\times C_{48}$$C_4\times C_{48}$$C_2\times C_4\times C_{16}$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed